Statistical Inference
 Test Set 5

1. In the following hypotheses testing problems identify the given hypotheses as simple or composite.
(i) $X \sim \operatorname{Exp}(\lambda), H_{0}: \lambda \leq 1$
(ii) $X \sim \operatorname{Bin}(n, p), n$ is known, $H_{0}: p=1 / 3$.
(iii) $X \sim \operatorname{Gamma}(r, \lambda), r$ is known, $H_{0}: \lambda>2$.
(iv) $X_{1}, \cdots, X_{n} \sim N\left(\mu, \sigma^{2}\right), H_{0}: \mu=0, \sigma^{2}=2$.
2. Let $X \sim P(\lambda)$. For testing $H_{0}: \lambda=1$ vs. $H_{0}: \lambda=4$ consider the test $\phi(x)=1$, if $x>2$; and 0 , if $x \leq 2$. Find the probabilities of type I and type II errors.
3. Let X have double exponential density $f_{X}(x)=\frac{1}{2 \sigma} e^{-|x| \sigma}, x \in \mathbb{R}, \sigma>0$. For the testing $H_{0}: \sigma=1$ vs. $H_{0}: \sigma>1$ consider the test function $\phi(x)=1$, if $|x|>1$; and 0 , if $|x| \leq 1$. Find the size and the power of the test. Show that power is always more than the size of the test.
4. Let X have Cauchy density $f_{\sigma}(x)=\frac{\sigma}{\pi\left(\sigma^{2}+x^{2}\right)}, x \in \mathbb{R}, \sigma>0$. Find the most powerful test of size α for the testing $H_{0}: \sigma=1$ vs. $H_{0}: \sigma=2$.
5. Let X have density $f_{\theta}(x)=\frac{2}{\theta^{2}}(\theta-x), \quad 0<x<\theta$. Find the most powerful test of size α for the testing $H_{0}: \theta=1$ vs. $H_{0}: \theta=2$.
6. Let X_{1}, \cdots, X_{n} be a random sample from a population with density $f_{\theta}(x)=\frac{1}{\sqrt{\theta}} x^{\theta-1} e^{-x}, x>0, \theta>0$. Show that the family has monotone likelihood ratio in $\prod X_{j}$. Hence derive UMP test of size α for testing $H_{0}: \theta \leq 3$ vs. $H_{0}: \theta>3$.
7. Let X_{1}, \cdots, X_{n} be a random sample from a population with beta density $f_{\theta}(x)=\frac{\sqrt{\theta+4}}{2 \sqrt{\theta+1}} x^{\theta}(1-x)^{2}, 0<x<1, \theta>0$. Show that the family has monotone likelihood ratio in $\prod X_{j}$. Hence derive UMP test of size α for testing $H_{0}: \theta \geq 2$ vs. $H_{0}: \theta<2$.
8. Based on a random sample of size n from $\operatorname{Exp}(\lambda)$ population, derive UMP unbiased test of size α for testing $H_{0}: \lambda=1$ vs. $H_{0}: \lambda \neq 1$.
9. Based on a random sample of size n from double exponential population with density $f_{X}(x)=\frac{1}{2 \sigma} e^{-|x| / \sigma}, x \in \mathbb{R}, \sigma>0 \quad$ derive UMP unbiased test of size α for testing $H_{0}: \sigma=1$ vs. $H_{0}: \sigma \neq 1$.
10. For the set up in Q. 5, find the LRT for the testing $H_{0}: \theta=2$ vs. $H_{0}: \theta \neq 2$.
11. Derive LRT test for the testing problem in Q. 9.
12. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an exponential population with the density $f(x)=e^{\mu-x}, x>\mu, \mu \in \mathbb{R}$. Find the LRT of size α for testing $H_{0}: \mu \leq 1$ vs $H_{1}: \mu>1$.
13. Find out the group of transformations under which the following testing problems are invariant:
(i) $X \sim e^{\theta-x}, \theta>x, H_{0}: \theta \geq 3$ vs. $H_{1}: \theta<3$
(ii) $X \sim \operatorname{Exp}(1 / \sigma), H_{0}: \sigma \leq 1$ vs. $H_{1}: \sigma>1$
14. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an inverse Gaussian distribution with density $f_{X}(x)=\left(\frac{\lambda}{2 \pi x^{3}}\right)^{1 / 2} \exp \left\{-\frac{\lambda(x-\mu)^{2}}{2 \mu^{2} x}\right\}, x>0$. Find the confidence intervals for the parameters.
15. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a Pareto population with density $f_{X}(x)=\frac{\beta \alpha^{\beta}}{x^{\beta+1}}, x>\alpha, \alpha>0, \beta>2$. Find the confidence intervals for α, β.

Hints and Solutions

1. (i) composite (ii) simple (iii) composite (iv) simple
2. $\quad \alpha=P_{\lambda=1}(X>2)=1-\frac{5}{2} e^{-1}, \beta=P_{\lambda=4}(X \leq 2)=13 e^{-4}$
3. $\quad \alpha=P(|X|>1)=e^{-1}$. Power $=P_{\sigma}(|X|>1)=e^{-1 / \sigma}>e^{-1}$, as $\sigma>1$.
4. Using NP Lemma, the most powerful test is to reject H_{0} when $R(x)=\frac{f_{2}(x)}{f_{2}(x)}>k$. Now $R(x)=\frac{2\left(1+x^{2}\right)}{\left(4+x^{2}\right)}$. It can be seen that $R^{\prime}(x)=\frac{6 x}{\left(4+x^{2}\right)^{2}}$. So $R(x)$ has a minimum $\frac{1}{2}$ at $x=0$ and supremum 2 as $x \rightarrow \pm \infty$. The most powerful test can then be designed as below:
(i) If we take $k \leq \frac{1}{2}$, then the MP test will always reject H_{0} and $\alpha=1$.
(ii) If we take $k \geq 2$, then the MP test will always accept H_{0} and $\alpha=0$.
(iii) If we take $\frac{1}{2}<k<2$, then the MP test will reject H_{0} when $R(x)>k$. This is equivalent to $|x|>\sqrt{\frac{(4 k-2)}{(2-k)}}$. Applying the size condition, we get $k=\frac{4}{4+3 \cos (1-\alpha)}$.
5. Using NP Lemma, we find that the MP test will reject H_{0} when $x<1-\sqrt{1-\alpha}$.
6. The solution will follow from the use of MLR property.
7. The solution will follow from the use of MLR property.
8. The test will be based on $\sum_{i=1}^{n} X_{i}$ which has a $\operatorname{Gamma}(n, \lambda)$ distribution.
9. The test will be based on $\sum_{i=1}^{n}\left|X_{i}\right|$ which has a $\operatorname{Gamma}(n, 1 / \sigma)$ distribution.
10. The test will reject H_{0} when $|X-1|>k$.
11. Use property in Q. 9.
12. The test will reject H_{0} when $X_{(1)}>1-\ln (\alpha)^{1 / n}$.
13. (i) translation group (ii) scale group
14. We can use the complete sufficient statistics and their distributions to formulate the confidence intervals.
15. Same method as in Q. 14 .
